
1

Interactive out-of-core visualization of very large multiresolution
time series scientific data

Progress Report
April 10, 2008

1. Goals for year 2
The principal goals for the year as described in the year 1 progress report are shown below.

Development Task Month Science task

1. Evaluate VAPOR 3 Give us advice/feedback on value of VAPOR
visualization tools

2. Expand non-uniform grid support 5 None. Their data format is already supported.

3. Package STARgen and VisIt
interface for distribution

6 Test ease of installation.

4. VisIt: auto resolution change 6 Use and evaluate modified interface

5. Error support 6 Use and evaluate error functionality

6. Granite/C++: caching/prefetching 10 Use caching/prefetching features, compare results

7. Adaptive resolution prototype 10 Test our implementation tool and give feedback

2. Achievements for year 2
2.1. Evaluate VAPOR
We downloaded, installed, and experimented with VAPOR (Visualization and Analysis Platform
for Ocean, Atmosphere and Solar Researchers (Clyne and Rast, 2007). This package supports
multiresolution data representation for large scale fluid flow visualization. In many ways the
strong features of this software are complementary to those of VisIt. The focus on three-
dimensional flow visualization provides substantially better support in this area (and more
convenient support) than is available in VisIt. For this reason, we thought that it might be a
potential alternative to or supplement for VisIt. After a thorough analysis of the functionality and
extensibility of the software, we decided that it would not be productive to put additional effort
into VAPOR at this time. The key factors for this decision included:

1. A major goal of using VAPOR was the hope that we could easily embed our multi- and
adaptive resolution data model seamlessly into the system. If this were possible, we
believed we could broaden the multiresolution tools available to our science colleagues
with modest effort. Our evaluation of the source code indicated that the integration effort
was going to be quite a bit more complicated than we had hoped (dreamed?).

2. Our science colleagues are not interested in using VAPOR. They are committed to the
VisIt environment primarily because of the support it provides for parallel computation
on a workstation farm. This functionality is not currently available in VAPOR.

Clyne, J. and Rast, M. "A prototype discovery environment for analyzing and visualizing terascale
turbulent fluid flow simulations", in proceedings of Visualization and Data Analysis 2005, pp.
284-294, January 2005.

2

2.2. Non-uniformly distributed grid
We implemented support in our VisIt interface for unstructured grids (non-uniformly distributed
data points).

2.3. Package STARgen for the VisIt multiresolution data interface
2.3.1. VisIt database plugin for multiresolution data
We have implemented a database plugin for VisIt that can read our multiresolution hierarchy and
provide VisIt renderers with multiple resolutions of data. With this interface any VisIt rendering
pipeline can access our multiresolution data format. The user explicitly controls the resolution
level with a simple interactive control panel.

2.3.2. STARgen multiresolution data generation utility
We also have a general purpose command-line utility, called STARgen, that allows a scientist to
generate arbitrarily complex hierarchies of spatial and temporal resolutions and to define how the
many output files are organized. This flexibility is intended to allow scientists to be able to
match the output data organization to the conventions of the environment in which the files will
be used. This tool is used to generate the data formats that are supported by our VisIt
multiresolution database plugin. The database plugin, however, only supports a small subset of
the possible data organizations that STARgen can generate. Since we are generating the data for
the plugin, there is no reason to require the plugin to support multiple file organizations – one
will do.

2.3.3. STARgui – a user-friendly interface to STARgen
In order to simplify the scientist’s access to the data generation tools, we implemented a GUI
environment to serve as an interface to the not-so-friendly command-line oriented STARgen tool.
This tool guides a user through the process needed to create the appropriate metadata information
required for STARgen and then through the process of specifying the desired operations. A
screen shot of one stage from STARgui is shown in figure 1.

2.3.4. Distributable software
The STARgui / VisIt Database Plugin combination represents a useful standalone utility that
could be of value to a wide range of scientists. We have packaged up an initial version of these
tools with documentation into a form that can be easily downloaded from our web site. The
STARgui tool is an executable Java jar file; the STARgen functionality is implemented by very
basic C++ code that makes use of no non-standard libraries. Both of these components should be
easily portable; we have installed them on both Linux and MacOS systems. The VisIt plugin, of
course, requires the same elaborate environment as VisIt.
The software can be downloaded from http://www.cs.unh.edu/star/download.htm. There are
actually three different tools available that can be used together or independently:

STARgui – a Java based gui that allows the user to build hierarchies of arbitrary mixtures of
spatial and temporal resolutions.

STARvisit – a VisIt plugin for STAR data hierarchies
STAROpenCCGM – a special purpose utility to generate STAR data from the OpenCCGM

simulator output data
The currently available versions limit the data to 3 resolution levels because of the current VisIt
plugin. We plan to remove this restriction in the next version.

3

2.4. VisIt autoresolution change
One goal for this year that we had thought would be straightforward was to provide an automatic
resolution change as a user zooms in or out. This would be a convenient mechanism to make the
transition between resolution levels implicit and seamless (given adequate performance). We
have implemented this feature outside of VisIt and it appears to be an effective model for
interaction with multiresolution data. Unfortunately, implementing this feature at the application
level does not seem to be possible within the VisIt framework. There is currently no mechanism
that allows a database plugin to be contacted with information about the state of the viewing
parameters. A fundamental assumption within the VisIt kernel is that a database plugin loads all
the data needed for the visualization before any rendering takes place and no further interaction
occurs with the plugin.
The only solution available to us is to modify the low level VisIt code to install the “hook” we
need; we do not think that this is a viable long-term option because of significant maintenance
and portability issues. We still plan to implement such a hook to evaluate the usability of this
feature in VisIt, but we do not plan to make it available outside our environment. If our changes
are minor and the functionality is effective, we will request that the VisIt project incorporate such
a feature in future releases.

Figure 1. A screen shot from STARgui.

4

2.5. Error representation
2.5.1. Error generation and visualization tools
We have implemented a prototype version of software to support our error model for
multiresolution data. This tool generates accurate error information for each resolution of our
data hierarchy when the hierarchy is generated using wavelet transformations. The error data has
the same resolution as the data at that resolution and represents the approximate local error that
occurs if this resolution is used to reconstruct the original data. We can generate both maximum
and average error information; each are valuable for different kinds of user goals. The error is of
the same format as the data and can be rendered by any VisIt rendering tool. Figure 2 shows 4
images from a frame produce by an MHD simulation using our multiresolution database plugin
and rendered using standard VisIt modules. The upper left image shows the original high-
resolution data for that frame; the upper right image shows the data at one resolution coarser than
the original data; the lower right image shows the average local error associated with the lower
resolution data; and the lower right image shows the error data displayed as a semi-transparent
image on top of the low resolution data. The superimposed image is most informative while
interactively changing the opacity, and it is also effective to just flip back and forth between the
error image and the low resolution image.

Figure 2. One frame of an MHD simulation using our VisIt database plugin and error
data. The upper left shows the original data; the upper right image shows the data at one

lower resolution level; the lower right shows the error associated with the lower
resolution data; and the lower right shows the error superimposed over the lower

resolution image with an opacity of about 60%.

5

Our wavelet-based multiresolution data generation utility produces data points at new positions
in space that do not correspond to any of the original data positions. This characteristic
complicates the implementation of adaptive resolution data sets. Consequently, it is also
desirable to be able to create multiresolution data hierarchies using decimation strategies in
which each lower resolution representation is defined by a subset of the data locations in the next
higher resolution representation. We have implemented such a tool and will soon complete the
corresponding error generation utility.

2.5.2. Expanded error model
Although the existing prototype for error representation is an important accomplishment, we
believe we now have a “better” idea. We now realize that maintaining error at the same
resolution as the data is often overkill. Especially, for very large datasets, the important role of
the error information is to provide feedback that tells the scientist when to use a higher resolution
representation. Seldom is the scientist interested in the error at a specific point in the dataset;
instead, we need to provide a variety of error representations for regions of the data.
We have developed a new error model that incorporates many different error representations, but
at lower resolution than the data resolution to which it is applied. For example, we plan to
maintain several error measures, such as maximum error, average error, standard deviation, and
signal-to-noise ratio information, but this information will be at 2-4 resolutions coarser than the
data to which it applies. Summary measurements, such as SNR and standard deviation, are very
important tools for understanding the error distribution, but these need multiple data points to
produce meaningful values. We still want to provide this information “locally” since it is the
local error that determines whether the scientist will zoom in to the higher resolution in that
region. An error resolution that is just 2 steps coarser than the data to which it applies can be
represented using 1/64 of the memory needed to represent error at the same resolution as the
data. This is a significant savings for the first few resolution levels for very large data sets, and
there are significant advantages to being able to present aggregate (but still local) error
information to the scientist.
We have begun the implementation of software to support this expanded error model.

2.6. Granite/VisIt interface
Granite is our experimental scientific database package that provides extensive support for
efficient access to large data sets in a Java-based environment. This system particularly is
particularly motivated by the goal to support interactive out-of-core data visualization. We have
developed several techniques to support this goal including the MR and AR data models and
caching/pre-fetching techniques for multi-dimensional data. All of these techniques aim to speed
up I/O, the primary performance bottleneck to achieving our goals. Performance improvements
come by pre-fetching necessary data once and retaining it until it is no longer needed to avoid re-
reads, and by reducing the volume of data accessed, as multi and adaptive resolution do.

2.6.1. Caching/prefetching
Our goal to interface our Granite caching/prefetching code to the VisIt environment continues to
be unmet. The rigid complexities of the VisIt data model (at the present time) preclude any
effective out-of-core rendering. As with the automatic resolution change, we are now planning to
explore the difficulty of inserting hooks into the underlying VisIt control software to allow the
datbase plugin to update the internal data as the rendering takes place. If we are successful, we
may not want to support this feature, but we will encourage that these changes be incorporated
into future VisIt releases.

6

2.6.2. Data compression
Although we are unable to access the Granite caching/prefetching facilities from VisIt, we have
begun development of additional Granite functionality that will be directly usable via the VisIt
data plugin that we have developed – block-oriented compression of data files. Data compression
has long been used as a technique for reducing storage and I/O demands, but this usually just
means encoding and re-inflating entire datasets.
Our approach is motivated by the fact that we want to support rapid access to specific regions
(subblocks) of a large dataset without reading the entire file. In this context, it does not help to
compress the entire file since this would mean reading everything and discarding what we don’t
need. Instead, we divide a large dataset into local partitions that we compress individually. With
proper indexing, the appropriate partitions can be quickly identified, fetched and decompressed
to satisfy a subblock query.
We want to incorporate compression seamlessly into our framework so the user is unaware of its
behind-the-scenes role. This seamless integration should be orthogonal to other system
components. We want the MR and AR data model implementations for both data and error
representation to take advantage of compression where appropriate in a way that is transparent to
other parts of the system.
There is a natural tradeoff between achieving high compression ratios (which favors large
partitions), and reading and decompressing only what is necessary for the query (which favors
small partitions). Preliminary experiments show that there is opportunity for a balanced choice
for block size that achieves effective compression without reading too much extra data. Over the
next few months we will conduct extensive tests our colleague’s MHD data to develop
guidelines to help them choose effective partition sizes given specific dataset sizes and
distributions of query region size.

This functionality will appear at a lower level of our multi-layered architecture than the data
model level. Thus we believe we can implement it in a way that supports our MR and AR data
models transparently. In addition, the use of this functionality is consistent with the VisIt data
model and we should be able to access it from our VisIt database plugin.

2.7. Adaptive resolution data
2.7.1. AR prototype
We made good progress on the design and planning of our AR software support prototype
system. Implementation was about to begin when the principal person responsible for this task
had to withdraw from the project and school for medical reasons. This has been a significant
setback for this effort. We are still not back to where we thought we were in November, 2007.

2.7.2. Expanded AR data model
In parallel with the implementation design, we explored alternative data representation models
that could provide more accurate data modeling in less space. This effort was motivated by our
experience in evaluating and using our error tools in the context of our multiresolution data
generation based on wavelet transformations.

Wavelet transforms generate two output files, the summary data and the detail data.
Mathematically, the detail coefficients encapsulate the error resulting from using the summary
data as an approximation to the original data. If all summary and detail coefficients are kept, the
original data can be reconstructed in a lossless manner (except for some computational roundoff
error). Keeping all the coefficients, however, does not result in any memory savings. Since

7

reduced memory use (and especially reduced I/O cost) is the critical goal of our data model, we
have been simply discarding all detail coefficients (7/8 of all coefficients with 3D data). This has
little effect in regions of low variation in data magnitude, which is where detail coefficients are
relatively small. In regions of high change, detail coefficients are larger and more error results
from using only summary coefficients to represent the original data.
Our adaptive resolution data model is based on identifying regions of high error at a particular
resolution and representing those regions by the wavelet summary coefficients at a higher
resolution. We still delete the detail coefficients.

We have been experimenting with alternative approaches that save the detail coefficients at a
lower precision than the summary data. We realized that most of the error in a low resolution
data representation is caused by a relatively small number of very high detail coefficients. We
also realized that the precision of the detail coefficients is not nearly as important as their
magnitude in determining the error that it represents. In most cases, we believe that a byte or a
short will be adequate for representing the error data. If the simulation output data is stored as a
float and if the error is stored as a short at two resolution levels lower than the data, the memory
cost for the error data will be significantly less than 1% of the memory cost for the data. If we
use byte, the cost is less than 0.4%. Because the magnitude of the detail is far more important
than the precision, we are planning to map the detail coefficient by a nonlinear function such as
the ones shown in Figure 3. The best choice depends on the magnitude of the largest detail
coefficient. This would be one additional piece of metadata needed for the decompression.

2.8. Summary of our VisIt interface
Our VisIt interface is an effective mechanism for accessing multiresolution data sets without
having to rewrite each visualization tool – as long as the data to be rendered fits in main
memory. This is not a huge restriction given the basic interaction model whereby higher
resolution data representations are accessed as the user zooms in to smaller spatial and temporal
ranges – the system can use available memory as a constraint in determining which resolution to
access for a given spatio-temporal request. However, there are significant features of our
proposed environment that are not effective in this context. In particular, we have shown
dramatic improvements in interactive visualization performance using our iteration-aware
caching and pre-fetching techniques for out-of-core rendering. We cannot provide this
functionality within the current VisIt environment.

Figure 3. Possible mappings of a detail coefficient to a byte

8

2.9. Achievements summary
The table below provides a very terse summary of what we have accomplished for each of our
major goals.

Revised Goal Achievements

1. Evaluate VAPOR Done. VAPOR’s internal organization does not appear to be
easily adaptable to our needs; our science colleagues are not
particularly interested in the VAPOR functionality.

2. Expand non-uniform grid
support

Completed for non-uniform rectilinear data distribution.

3. Package STARgen and VisIt
interface for distribution

Completed the interface and created a GUI front end that
makes the data generation much more user friendly

4. VisIt: auto resolution change Not implemented; not feasible with current VisIt design.

5. Error support A preliminary version of error representation software has
been completed and is usable for evaluation purposes. We
have made significant progress in developing a new, more
workable and useful error model. Preliminary
implementation has begun and we have had some
encouraging results.

6. Granite/Visit interface:
caching/prefetching

It does not appear that it is feasible to access Granite
prefetching from VisIt. We have, however, made progress in
developing a file block compression facility in Granite. This
will be available to our VisIt database plugin and should
improve I/O performance significantly.

7. Adaptive resolution prototype Significant design and planning was completed. The
implementation was interrupted because of a personnel
issue. We have a replacement for that individual who will
be responsible for this effort as of the summer.

3. Revised future goals
3.1. Extend VisIt/STARgen multiresolution data interface
Our initial Visit/STARgen utility supports three spatial resolution levels, each with its own
temporal resolution. We will significantly relax these restrictions to allow the user to have
arbitrary combinations of spatial and temporal resolution. Target completion: June 2008.

3.2. VisIt autoresolution change
We intend to implement the autoresolution change feature in VisIt. Although we do not plan to
distribute this functionality, we will get feedback from our colleagues about its value and, if
justified, lobby with the VisIt community to incorporate access mechanisms for functionality
such as this into the core VisIt software. Target completion: June 2008.

3.3. Multiresolution data generation by decimation
We are extending our multiresolution data generation functionality to include a decimation
option along with the current wavelet option. Even though the error introduced by decimation is

9

normally higher than that introduced by wavelet decompositions, it is significantly easier and
more efficient to implement adaptive resolution support for multiresolution hierarchies generated
by decimation techniques. We will extend our VisIt database plugin (or implement another) to
support this variation of multiresolution data. Target completion: September 2008.

3.4. Granite/VisIt interface
We plan to complete a preliminary version of Granite support for compressing large data files by
blocks and incorporate this functionality into our VisIt database plugin. Target completion:
September 2008.

3.5. Adaptive resolution support
Adaptive resolution (AR) data representation provides a single data representation that has
different resolutions in different spatial or temporal regions; regions with high variation will use
a higher resolution and than those with low variation. This model should allow for significantly
reduced memory utilization and I/O time. Target completion: September 2008.

3.6. VisIt AR interface
Once we have a reasonable AR implementation, we want to provide access to it from the VisIt
environment. Target completion: December 2008.

3.7. Error model implementation
During this past year, we have significantly modified and extended our error model for MR and
AR data. Our major innovation is the realization that we need to provide a variety of error
representations that rely on coarser resolutions of summary error characteristics. We will
implement several statistical models of local error including mean, standard deviation, and
signal-to-noise ratios. These will all be supported at multiple resolutions for each data
resolution. Target completion: January 2009.

3.8. Final Evaluation
Although we have incorporated evaluation as a component of each of our proposed tasks, we
plan to devote the last quarter of the grant period to a systematic effort to quantify the various
aspects of our implementation. We are particularly interested in understanding the following:

1. how the various options for generating AR data representations affect the interactive data
access performance for the particular MHD simulation datasets used by our colleagues;

2. what error statistics are effective and efficient for providing insight to the scientists;
3. although we are planning to rely on existing VisIt visualization tools for presenting the

error, we know that effective visualization is a key component for providing insight;
consequently, we will work with our science colleagues to identify visualization tools
that help make the error representations more effective;

4. how effective the Granite block compression functionality is for the MHD simulation
data and what block size guidelines seem to be most effective.

Target completion: March 2009.

3.9. Summary of major goals
The table below provides a summary of the major planned tasks for the remainder of the grant
period. Note that there will be additional code packaging and distribution tasks for subsequent
versions of the software. Specific dates for completion of these tasks will be determined as the
development proceeds.

10

Development Task Date Science task

1. Extend VisIt/STARgen package 6/08 Give us advice/feedback on ease of installation/use.

2. Implement VisIt hook for auto
resolution change

6/08 Use and evaluate resolution change interface

3. Investigate VisIt hook for out-of-core
rendering

6/08 If successful, test performance.

4. MR data generation by decimation 9/08 Compare MR by decimation vs MR by wavelet.

5. Granite/VisIt interface for accessing
compressed files.

9/08 Help evaluate performance characteristics and
develop partition size heuristics for their data.

6. Adaptive resolution prototype 9/08 Advise on relative importance of temporal v. spatial
resolution changes and appropriate error criteria for
local resolution decisions

7. VisIt data interface: AR support 12/08 Compare performance/quality to non-AR using VisIt

8. Error model design/implementation 1/09 Advice on useful error representations and
resolutions.

9. Final evaluation 3/09 Significant collaboration in the process of
evaluation and the interpretation of the results.

We point out that there is one major previous goal that has been omitted from this list: an attempt
to incorporate our software into an existing grid environment. Although this is still an overall
goal of our research effort, we do not think that it is realistic to achieve this in the coming year.
The loss of one of our key team members last fall has had a major negative effect on our
accomplishments this year. Although we are beginning to recover, we simply will not be able to
achieve all that we had originally intended.

4. Publications
Bergeron, R.D. and R.A. Foulks, “Interactive Out-of-Core Visualization of Multiresolution Time Series

Data”, in Numerical Modeling of Space Flows: 1ST IGPP – CalSpace International Conference, ed.
Nikolai V. Pogorelov and Gary P. Zank, ASP Conference Series, Vol 359, Astronomical Society of
the Pacific, 2006, pp. 285-294.

Foulks, R., D. Benedetto, R.D. Bergeron and T.M. Sparr, STARdata: A Data Server for Multiresolution
Time Series Data, AGU Fall Meeting Abstracts, Dec. 2006, p. A1316+.

Foulks, R.A. and R.D. Bergeron, Multiresolution Data Access Within The VisIt Visualization
Environment, Proceedings of the NASA Science Technology Conference 2007, June 19-21,
University of Maryland University College.
http://esto.nasa.gov/conferences/nstc2007/papers/Foulks_Andrew_A11P1_NSTC-07-0066.pdf

STARgui User’s Guide, http://www.cs.unh.edu/star/release/UsersGuide.doc.
Foulks, R.A. and R.D. Bergeron, Adaptive Resolution Data Access For Visualization of

Magnetohydrodynamic Simulation Data, in preparation,
http://www.cs.unh.edu/star/papers/inprogress.pdf .

